In a fusion of atomic power and artificial intelligence (AI), a research group at the United States Department of Energy Argonne National Laboratory has revealed a groundbreaking advancement in the operation and safety of advanced nuclear reactors, specifically those referred to as sodium-cooled fast reactors (SFRs).

Machine Learning Transforming Nuclear Power OperationsSFRs are innovative nuclear reactors utilizing liquid sodium as a coolant to efficiently produce electricity without carbon emissions by fission of heavy atomic nuclei. Although not yet commercially operational in the United States, these reactors hold the potential to transform power generation and contribute to the reduction of radioactive waste. They pose certain technical hurdles, particularly in maintaining the liquid sodium coolant pure at high temperatures, which is vital to hinder corrosion and blockages in the reactor’s circulation system.

In response to these technical hurdles, the Argonne research team developed a novel AI-driven system, the details of which are chronicled in a recent publication within the Energies journal.

“Employing the capabilities of artificial intelligence to perform ongoing surveillance and pinpoint irregularities pushes the envelope in control instruments,” acknowledged Alexander Heifetz, a chief nuclear engineer at Argonne and a contributor to the publication. “Such innovation heralds a leap forward in the operative efficiency and economic viability of nuclear power apparatus.”

The researchers designed an AI model that conducts continuous oversight over the reactor’s cooling mechanism. This model is devised to interpret readings from an array of 31 sensors located within Argonne’s Mechanisms Engineering Test Loop (METL), a specialized experimental complex used for rigorous assessment of materials and mechanisms designed for these reactors. Besides testing materials and components, METL prepares both engineers and technicians—including now AI systems—for handling and preserving these facilities—a comprehensive monitoring system intensified with AI which proficiently bolsters oversight and pre-empts disruptions that could impair an actual reactor’s functionality.

The team showcased how the AI model could swiftly and accurately recognize irregularities in operations. The efficacy of the model was tested through the simulation of a severe anomaly, characterized by abrupt surges in temperature and flow intensity. The model identified the disturbance in just under three minutes from its commencement, confirming its reliability as a protective feature.

The research also signals considerable enhancements for subsequent iterations of the model. Presently, the model alerts whenever a reading surpasses a certain predetermined limit. This could trigger false positives owing to temporary fluctuations or sensor inaccuracies. Not every surge signifies a disturbance. Going forward, the team intends to upgrade the algorithm to differentiate true operational disturbances from random data deviations. This will entail waiting for the signal to surpass the threshold for a specific duration prior to confirming it as an irregularity and integrating spatial and temporal relationships among sensors in the assessment process.

“Though the distinct attributes of METL have been leveraged to design and verify our algorithms within a liquid metal experimental setting, the potential for this tech extends to advanced reactors, too,” Heifetz remarked. “This could lead to an increase in carbon-neutral energy solutions in times ahead.”

Alexandra Akins, an assistant researcher at Argonne and a co-author of the study, is optimistic. “Our work on irregularity detection with the aid of artificial intelligence shows the growing potential of nuclear power.”

Other posts

  • Comparison of Traditional Regression With Regression Methods of Machine Learning
  • Implementing Machine Learning Algorithms with Python
  • How Machine Learning Affects The Development of Cities
  • The AI System Uses a Huge Database of 10 Million Biological Images
  • Improving the Retail Customer Experience Using Machine Learning Algorithms
  • Travel Venture Layla Snaps Up AI-Driven Trip Planning Assistant Roam Around
  • Adaptive Learning
  • The Role of Machine Learning in Manufacturing Quality Control
  • Bumble's Latest AI Technology Detects And Blocks Fraudulent And Fake Accounts
  • A Revolution in Chemical Analysis With GPT-3
  • An Introductory Guide to Neural Networks and Deep Learning
  • Etsy Introduces Gift Mode, an AI-Powered Tool That Creates Over 200 Custom Gift Collections
  • Machine Learning Programs For People With Disabilities
  • Fingerprint Detection with Machine Learning
  • Reinforcement Learning
  • Google Introduces Lumiere - An Advanced AI-Powered Text-To-Video Tool
  • Transforming Energy Management with Predictive Analytics
  • Image Recognition Using Machine Learning
  • A Machine Learning Study Has Shown That Seagulls Are Changing Their Natural Habitat To An Urban One
  • The Method of Hybrid Machine Learning Increases the Resolution of Electrical Impedance Tomography
  • Comparing Traditional Regression with Machine Learning Regression Techniques
  • Accelerated Discovery of Environmentally Friendly Energy Materials Using a Machine Learning Approach
  • An Award-Winning Japanese Writer Uses ChatGPT in Her Writing
  • Machine Learning in Stock Market Analysis
  • OpenAI to Deploy Counter-Disinformation Measures for Upcoming 2024 Electoral Process
  • Clustering Algorithms in Unsupervised Learning
  • Recommender Systems in Music and Entertainment
  • Scientists Create AI-Powered Technique for Validating Software Code
  • Innovative Clustering Algorithm Aids Researchers in Deciphering Complex Molecular Data
  • An Introduction to SVMs for Beginners
  • Machine Learning in Cybersecurity
  • Bioengineers Constructing the Nexus Between Organoids and Artificial Intelligence Utilizing 'Brainoware' Technology
  • Principal Component Analysis (PCA)
  • AWS AI Unveils Data Augmentation with Controllable Diffusion Models and CLIP Integration
  • Machine Learning Applications in Healthcare
  • Understanding the Essentials of Machine Learning Algorithms
  • Harnessing AI Language Processing to Advance Fusion Energy Studies
  • Leveraging Distributed Ledger Technology to Boost Machine Learning in Crop Phenotyping
  • Understanding Convolutional Neural Networks
  • Using Artificial Intelligence to Identify Subterranean Reservoirs of Renewable Energy
  • Scientists Create Spintronics-Based Probabilistic Computing Systems for Modern AI Applications
  • Natural Language Processing (NLP) and Text Mining Techniques
  • Artificial Intelligence Systems Demonstrate Proficiency in Imitation, But Struggle with Innovation
  • Leveraging Predictive Analytics for Smarter Supply Chain Decisions
  • AI-Powered System Offers Affordable Monitoring of Invasive Plant
  • Using Machine Learning to Track Driver Attention Levels Could Enhance Road Safety
  • K-Nearest Neighbors (KNN)
  • Precision Farming, Crop Yield Prediction, and Machine Learning
  • AI Model Analyzes Characteristics of Potential New Medications
  • Scientists Create Large Language Model for Medicine
  • Introduction to Recurrent Neural Networks
  • Hidden Markov Models (HMMs)
  • Using Machine Learning to Combat Fraud
  • The Impact of Machine Learning on Gaming
  • Machine Learning in the Automotive Industry
  • Recent Research Suggests Larger Datasets May Not Always Enhance AI Model
  • Scientists Enhance Air Pollution Exposure Models with the Integration of Artificial Intelligence and Mobility Data
  • Improving Flood Mitigation Through Machine Learning Innovations
  • Scientists Utilized Machine Learning and Molecular Modeling to Discover Potential Anticancer Medications
  • Improving X-ray Materials Analysis through Machine Learning Techniques
  • Utilizing Machine Learning, Researchers Enhance Vaccines and Immunotherapies for Enhanced Treatment Effectiveness
  • Machine Learning Empowers Users with 'Superhuman' Capabilities to Navigate and Manipulate Tools in Virtual Reality
  • Research Highlights How Large Language Models Could Undermine Scientific Accuracy with False Responses
  • Algorithm Boosts Secure Communications without Sacrificing Data Authenticity
  • Random Forests in Predictive Modeling
  • Decision Trees
  • Supervised vs. Unsupervised Learning
  • The Evolution of Machine Learning Algorithms Over the Years